کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
713656 892173 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Maximum-Likelihood Parameter Estimation for Detecting Local Concentration from a Carbon Nanotube-based Sensor
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Maximum-Likelihood Parameter Estimation for Detecting Local Concentration from a Carbon Nanotube-based Sensor
چکیده انگلیسی

This paper proposes an optimal parameter estimation method for a stochastic process involving monomolecular adsorption and desorption occurring at the nano-scale. Recently, several carbon nanotube sensors that can selectively detect target molecules at a trace concentration level have been developed. These sensors make use of light intensity changes mediated by the adsorption or desorption phenomena on their surfaces. However, the molecular-level events are inherently stochastic, posing a challenge for optimal estimation. The stochastic behavior is modeled by the chemical master equation (CME), which contains a set of ordinary differential equations describing the time evolution of probabilities for the possible adsorption states. Given the inherent stochastic nature of the underlying phenomena, rigorous stochastic estimation based on the CME should outperform deterministic parameter estimation formulated based on the continuum model. Motivated by this expectation, we formulate the maximum likelihood estimation (MLE) based on an analytical solution of the relevant CME for both the constant and time-varying parameter cases. The performance of the MLE and the deterministic least squares are compared using data generated by kinetic Monte Carlo (KMC) simulations of the stochastic process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 32, December 2013, Pages 166-171