کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
713659 892173 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluation of Adaptive Extended Kalman Filter Algorithms for State Estimation in Presence of Model-Plant Mismatch
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Evaluation of Adaptive Extended Kalman Filter Algorithms for State Estimation in Presence of Model-Plant Mismatch
چکیده انگلیسی

The occurrence of model-plant mismatch is a common problem in dynamic model based applications such as state estimation. The use of an inaccurate model results in biased estimates of the states. Hence, conventional state estimation algorithms are modified in various ways to compensate for model-plant mismatch. In this work, the performance of four adaptive state estimation algorithms is compared in the presence of a model plant mismatch arising due to random drifts in parameter values. The comparison is carried out through simulations on a benchmark non-isothermal CSTR problem. Simulation results demonstrate that online re-identification of the parameters susceptible to drift or change is the most effective approach to minimize the effect of model-plant mismatch on the state estimates.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 32, December 2013, Pages 184-189