کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
713688 892173 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Correntropy-based kernel learning for nonlinear system identification with unknown noise: an industrial case study
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Correntropy-based kernel learning for nonlinear system identification with unknown noise: an industrial case study
چکیده انگلیسی

One significant challenge in nonlinear system identification development for industrial processes is that the modeling samples often contain outliers and unknown noise. In this paper, a novel Correntropy-based Kernel Learning (CKL) method is proposed for identification of nonlinear systems with such uncertainty. Without resort to unnecessary efforts, the CKL identification method can reduce the effects of outliers by the use of a robust nonlinear estimator that maximizes correntropy. The superiority of the proposed CKL method is demonstrated through identification of an industrial process in Taiwan. The benefit of its more accurate and reliable performance indicates that CKL is promising in practice for identification of nonlinear systems with unknown noise.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 32, December 2013, Pages 361-366