کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
713694 892173 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combined neural network and particle filter state estimation with application to a run-of-mine ore mill
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Combined neural network and particle filter state estimation with application to a run-of-mine ore mill
چکیده انگلیسی

A run-of-mine (ROM) ore milling circuit poses many difficulties in terms of measuring process variables and determining accurate models. Control of the ROM circuit is therefore not a trivial task to achieve. An example of a ROM circuit model with reduced complexity that works well for control purposes is discussed. The mill model is discussed in detail, as this model is used for state estimation. A neural network is trained with three disturbance parameters and used to estimate the internal states of the mill, and the results are compared with those of particle filter implementation. A novel combined neural network and particle filter state estimator is presented. The estimation performance of the neural network is promising when the disturbance magnitude used is smaller than that used to train the network.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 32, December 2013, Pages 397-402