کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
713697 | 892173 | 2013 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive Anti-Over-Fitting Soft Sensing Method Based on Local Learning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Local learning based soft sensing methods are effective in dealing with process nonlinearities as well as time varying characteristics. In this paper, an anti-over-fitting method is proposed for appropriate online local model adaptation. The proposed method is based on the weighted sum of the predicted errors for the newest few samples, the weights of which are determined adaptively. Moreover, to reduce the online computational load and memory cost, we propose two adaptive process states division schemes which consider the influence of both the variance and mean value of the predicted residual. Two case studies on continuous stirred tank reactor and debutanizer column demonstrate the effectiveness of the proposed soft sensing scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 32, December 2013, Pages 415-420
Journal: IFAC Proceedings Volumes - Volume 46, Issue 32, December 2013, Pages 415-420