کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
714546 892188 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mixed–-Level Iteration Schemes for Nonlinear Model Predictive Control
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Mixed–-Level Iteration Schemes for Nonlinear Model Predictive Control
چکیده انگلیسی

In general, numerical schemes for nonlinear model predictive control (NMPC) require the (approximate) solution of a nonlinear program in each sample for feedback generation. Thus, the application of NMPC to processes that need fast feedback poses a major computational challenge. Recently, new multi–level iteration schemes have been proposed, extending the well–known idea of real–time iterations. These algorithms take into account different time scales inherent in the dynamic model by updating the data of the feedback–generating quadratic program (QP), i.e., Hessians and Jacobians, gradients, and constraint residuals, on different levels. In this contribution we consider new mixed–level updates of the QP data, which interval–wise apply different update levels. In particular, we apply higher–level updates more frequently on the first intervals of the control horizon, given their importance in the context of model predictive control in general. Targeting at modern computers with multi–core processing units, we describe an efficient parallel implementation of the mixed–level iteration approach and apply it to a benchmark problem from automotive engineering.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 45, Issue 17, 2012, Pages 138-144