کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
714935 892193 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Creating Sparse Rational Approximations for Linear Fractional Representations using Genetic Programming
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Creating Sparse Rational Approximations for Linear Fractional Representations using Genetic Programming
چکیده انگلیسی

The objective of this paper is to stress that the size of a Linear Fractional Representation (LFR) significantly depends on the way tabulated or irrational data are approximated during the modeling process. It is notably shown that rational approximants can result in much smaller LFR than polynomial ones. In this context, a new method is introduced to generate sparse rational models, which avoid data overfitting and lead to simple yet accurate LFR, thanks to a symbolic regression technique. Genetic Programming is implemented to select sparse monomials and coupled with a nonlinear iterative procedure to estimate the coefficients of the surrogate model. Furthermore, a μ-analysis based proof is given to check the nonsingularity of the resulting rational functions. The proposed method is evaluated on an aeronautical example and successfully compared to more classical approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 20, 2013, Pages 393-398