کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
714936 892193 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Creating Sparse Rational Approximations for Linear Fractional Representations using Surrogate Modeling
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Creating Sparse Rational Approximations for Linear Fractional Representations using Surrogate Modeling
چکیده انگلیسی

The objective of this paper is to stress that the size of a Linear Fractional Representation (LFR) significantly depends on the way tabulated or irrational data are approximated during the modeling process. It is notably shown that rational approximants can result in much smaller LFR than polynomial ones. In this context, a new method is introduced to generate sparse rational models, which avoid data overfitting and lead to simple yet accurate LFR. This method builds a parsimonious model based on neural networks, and then translates the result into a fractional form. A stepwise selection algorithm is used, combining the benefits of forward orthogonal least squares to estimate the regression parameters with a new powerful global optimization to determine the best location of the regressors. The proposed method is evaluated on an aeronautical example and successfully compared to more classical approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 46, Issue 20, 2013, Pages 399-404