کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7152488 1462399 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using multi-label classification for acoustic pattern detection and assisting bird species surveys
ترجمه فارسی عنوان
با استفاده از طبقه بندی چند لایک برای تشخیص الگوی صوتی و کمک به بررسی گونه های پرنده
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی
Acoustics is a rich source of environmental information that can reflect the ecological dynamics. To deal with the escalating acoustic data, a variety of automated classification techniques have been used for acoustic patterns or scene recognition, including urban soundscapes such as streets and restaurants; and natural soundscapes such as raining and thundering. It is common to classify acoustic patterns under the assumption that a single type of soundscapes present in an audio clip. This assumption is reasonable for some carefully selected audios. However, only few experiments have been focused on classifying simultaneous acoustic patterns in long-duration recordings. This paper proposes a binary relevance based multi-label classification approach to recognise simultaneous acoustic patterns in one-minute audio clips. By utilising acoustic indices as global features and multilayer perceptron as a base classifier, we achieve good classification performance on in-the-field data. Compared with single-label classification, multi-label classification approach provides more detailed information about the distributions of various acoustic patterns in long-duration recordings. These results will merit further biodiversity investigations, such as bird species surveys.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Acoustics - Volume 110, September 2016, Pages 91-98
نویسندگان
, , , , ,