کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7153211 | 1462467 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Micro-CT image calibration to improve fracture aperture measurement
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A novel technique for the accurate measurement and adjustment of fracture apertures in digital images of fractured media is presented. We utilize X-ray micro-computed tomography to image a highly fractured coal sample and collect high-resolution scanning electron microscope (SEM) images from the samples surface to facilitate segmentation of coal fractures. The gray-scale micro-CT values at the mid-point of fractures are obtained and correlated to aperture sizes measured with the higher resolution SEM data. Afterwards, the micro-CT images are upsampled to enable assignment of aperture sizes smaller than the image resolution. We initially segment the coal image, upsample the segmented image, and then re-calibrate the fracture aperture sizes. The final calibrated segmented image contains the fracture network acquired from the micro-CT data with precise aperture sizes assigned based on the high-resolution SEM data. To illustrate the importance of accurate aperture measurement, two coal subsets are tested. The permeabilities before and after applying the calibration method are measured. The results show a significant change in numerical permeabilities after applying the calibration method. This indicates that a large amount of information is potentially omitted when utilizing standard image segmentation tools to segment fractured media.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Case Studies in Nondestructive Testing and Evaluation - Volume 6, Part B, November 2016, Pages 4-13
Journal: Case Studies in Nondestructive Testing and Evaluation - Volume 6, Part B, November 2016, Pages 4-13
نویسندگان
Hamed Lamei Ramandi, Ryan T. Armstrong, Peyman Mostaghimi,