کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7156421 | 1462647 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A two-level variational multiscale meshless local Petrov-Galerkin (VMS-MLPG) method for convection-diffusion problems with large Peclet number
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is challengeable to obtain the stable and accurate solutions of convection-diffusion problems with large Peclet number (Pe) since the convection term may cause oscillation solutions at large Pe. In this paper, a unit operator (first level) and an orthogonal project operator (second level) are constructed to act as the stability terms for meshless local Petrov-Galerkin (MLPG) method, which is called a two-level variational multiscale MLPG (VMS-MLPG) method. The VMS-MLPG method is applied to eliminate oscillation, overshoots and undershoots of MLPG method at large Pe. The prediction accuracy and the numerical stability of the proposed method for the Smith-Hutton and the Brezzi problems are analyzed and validated by comparing with the MLPG method and the finite volume method (FVM) with various difference schemes. It is showed that the present VMS-MLPG method can guarantee the stable and reasonable solutions of convection-diffusion problems with large Peclet number.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Fluids - Volume 164, 15 March 2018, Pages 73-82
Journal: Computers & Fluids - Volume 164, 15 March 2018, Pages 73-82
نویسندگان
Chen Zheng-Ji, Li Zeng-Yao, Xie Wen-Li, Wu Xue-Hong,