کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
715710 892207 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance Comparison of the Distributed Extended Kalman Filter and Markov Chain Distributed Particle Filter (MCDPF)
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Performance Comparison of the Distributed Extended Kalman Filter and Markov Chain Distributed Particle Filter (MCDPF)
چکیده انگلیسی

We compare the performance of two distributed nonlinear estimators for a multi-vehicle flocking system using range measurements only. The estimators are the Distributed Extended Kalman Filter (DEKF) and the Markov Chain Distributed Particle Filter (MCDPF), where the distributed implementation in both cases is done using consensus-type algorithms. The performance of the estimators is compared as the system complexity (number of vehicles) and measurement frequency are varied. It is shown that for simple systems (few vehicles) or high measurement frequency the DEKF method has lower expected error than MCDPF, while for complex systems (many vehicles) or low measurement frequency the MCDPF method is both more robust and more accurate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 43, Issue 19, 2010, Pages 151-156