کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
715732 892207 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simultaneous distributed estimation and classification in sensor networks
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Simultaneous distributed estimation and classification in sensor networks
چکیده انگلیسی

In this work we consider the problem of simultaneously classifying sensor types and estimating hidden parameters in a network of sensors subject to gossip-like communication limitations. In particular, we consider a network of scalar noisy sensors which measure a common unknown parameter. We assume that a fraction of the nodes is subject to the same (but possibly unknown) offset. The goal for each node is to simultaneously identify the class the node belongs to and to estimate the common unknown parameter, only through local communication and computation. We propose a distributed estimator based on the maximum likelihood (ML) approach and we show that, in case the offset is known, this estimator converges to the centralized ML as the number N of sensor nodes goes to infinity. We also compare this strategy with a distributed implementation of estimation-maximization (EM) algorithm; we show tradeoffs via numerical simulations in terms of robustness, speed of convergence and implementation simplicity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 43, Issue 19, 2010, Pages 281-286