کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
716510 892222 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An Approximation Approach for Model Predictive Control of Stochastic Max-Plus Linear Systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
An Approximation Approach for Model Predictive Control of Stochastic Max-Plus Linear Systems
چکیده انگلیسی

Model Predictive Control (MPC) is a model-based control method based on a receding horizon approach and online optimization. In previous work we have extended MPC to a class of discrete-event systems, namely the max-plus linear systems, i.e., models that are “lineal” in the max-plus algebra. Lately, the application of MPC for stochastic max-plus-linear systems has attracted a lot of attention. At each event step, an optimization problem then has to be solved that is, in general, a highly complex and computationally hard problem. Therefore, the focus of this paper is on decreasing the computational complexity of the optimization problem. To this end, we use an approximation approach that is based on the p-th raw moments of a random variable. This method results in a much lower computational complexity and computation time while still guaranteeing a good performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 43, Issue 12, 2010, Pages 376-381