کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
716728 892227 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Bias-Eliminated Subspace Identification Method for Errors-in-Variables Systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
A Bias-Eliminated Subspace Identification Method for Errors-in-Variables Systems
چکیده انگلیسی

For model identification of industrial operating systems subject to noisy input-output observations, known as the error-in-variables (EIV) problem, a subspace identification method is proposed in this paper by developing an orthogonal projection approach to guarantee consistent estimation of the deterministic part of such a system. The rank condition for such orthogonal projection is analyzed in terms of the nominal state-space model structure. Using the principal component analysis (PCA), the extended observability matrix and low triangular block-Toeliptz matrix of the state-space model are analytically derived. Accordingly, the system state-space matrices can be retrieved in a transparent manner from the above matrices through linear algebra or an ordinary least-squares (LS) algorithm. A benchmark example used in the existing references is adopted to demonstrate the effectiveness and merit of the proposed subspace identification method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 45, Issue 15, 2012, Pages 166-171