کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7168768 1463032 2018 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel approach to evaluate mixed-mode SIFs for a through-thickness crack in a welding residual stress field using an effective welding simulation method
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
A novel approach to evaluate mixed-mode SIFs for a through-thickness crack in a welding residual stress field using an effective welding simulation method
چکیده انگلیسی
This paper accurately evaluates mixed-mode SIFs (MM-SIFs) for cracks in welding residual stress (WRS) fields using a novel approach based on finite element method (FEM). For this reason, the interaction integral method (IIM) available in WARP3D, an open source code, was developed to include normal and shear stress components in MM-SIF solutions. The effectiveness of the developed WARP3D-IIM was verified based on the superposition method and by means of well-established analytical and numerical reference solutions using an inclined through-thickness cracked FE model. After validating the adequacy of the developed WARP3D-IIM, different welding simulations were conducted using JWRIAN (Joining and Welding Research Institute ANalysis). JWRIAN, a sophisticated welding simulation in-house code, was adopted as a welding simulation tool to predict WRS. Different weld line (WL) orientations, as well as different perpendicular distances between WLs, were performed to investigate their influence on the behavior of MM-SIFs. The developed WARP3D-IIM and superposition method were thereafter employed to evaluate MM-SIF solutions for an inclined through-thickness crack in the simulated WRS fields. Different crack angles were also employed to examine the effect of the induced WRS on calculated MM-SIFs. SIF solutions resulting from WRS were validated with analytical reference solutions. Results showed that WRS has a considerable influence on the behavior of MM-SIFs. Moreover, WL orientation as well as the perpendicular distance between WLs revealed a significant influence on the induced WRS and thus MM-SIF solutions. On the other hand, the crack angle showed a remarkable effect on the behavior of MM-SIFs. MM-SIFs calculated at through-thickness crack fronts were influenced by the induced WRS distribution as well as crack angle.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Fracture Mechanics - Volume 197, 15 June 2018, Pages 48-65
نویسندگان
, , , ,