کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7173113 1464041 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of elevated temperature on the mechanical properties of high-strain-rate-induced partially damaged concrete and CFSTs
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Effect of elevated temperature on the mechanical properties of high-strain-rate-induced partially damaged concrete and CFSTs
چکیده انگلیسی
The present research investigates the effect of high temperatures on the mechanical properties of plain concrete as well as steel-concrete composite samples which have previously sustained partial damage under high-strain-rate loading. With the rise of interest in investigating extreme loading events such as post-impact-fire scenarios, this study will help in evaluating whether partially damaged concrete and composite elements can further sustain additional stresses in case of a subsequent fire outbreak. Unconfined self- compacting concrete (SCC) and SCC-filled mild steel tube (CFST) samples are subjected to a dual-phase testing procedure where they undergo interrupted compressive loading at impact rates of strain, controlled locally at pre-defined damage levels to account for different deformation states. Damaged specimens are subsequently exposed to elevated temperatures and the residual mechanical properties of the samples are measured under quasi-static compression test conditions. Results indicate that for concrete and CFSTs, variation of residual properties is dependent on the level of pre-induced damage as well as exposed temperature, with the effect of pre-deformation losing significance at very high temperatures. Residual characteristics of CFSTs are shown to be reliant on rate and temperature dependency of both constituent materials. Furthermore, X-ray imaging has been utilized to investigate the extent of cracking and crack propagation at different damage levels.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Impact Engineering - Volume 110, December 2017, Pages 346-358
نویسندگان
, , , ,