کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
717435 892239 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Obstacle Detection in an Unstructured Industrial Robotic System: Comparison of Hidden Markov Model and Expert System
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Obstacle Detection in an Unstructured Industrial Robotic System: Comparison of Hidden Markov Model and Expert System
چکیده انگلیسی

This paper presents a comparison of two approaches for detecting unknown obstacles inside the workspace of an industrial robot using a laser rangefinder for 2-D measurements. The two approaches are based on Expert System (ES) and Hidden Markov Model (HMM). The results presented in the paper demonstrate that both approaches are able to correctly detect and classify unknown objects. The ES is characterised by low computational requirements and an easy setup when relatively few known objects are to be included inside the workspace. HMMs are characterised by a higher flexibility and the ability to handle a larger amount of known objects inside the workspace. Another significant benefit of the HMM approach taken in this paper, in contrast to voice recognition, is the fact that the learnt parameters of the HMMs have physical meaningful geometrical interpretations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 45, Issue 22, 2012, Pages 271-276