کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7174655 | 1465337 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stochastic stability of quasi-integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A procedure for calculating the largest Lyapunov exponent and determining the asymptotic Lyapunov stability with probability one of multi-degree-of-freedom (MDOF) quasi-integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises is proposed. The averaged stochastic differential equations (SDEs) of quasi-integrable and non-resonant Hamiltonian systems subject to parametric excitations of combined Gaussian and Poisson white noises are first derived by using the stochastic averaging method for quasi-Hamiltonian systems and the stochastic jump-diffusion chain rule. Then, the expression for the largest Lyapunov exponent is obtained by generalizing Khasminskii's procedure to the averaged SDEs and the stochastic stability of the original systems is determined approximately. An example is given to illustrate the application of the proposed procedure and its effectiveness is verified by comparing with the results from Monte Carlo simulation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Non-Linear Mechanics - Volume 58, January 2014, Pages 191-198
Journal: International Journal of Non-Linear Mechanics - Volume 58, January 2014, Pages 191-198
نویسندگان
Weiyan Liu, Weiqiu Zhu, Wantao Jia,