کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
717663 892246 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An unsupervised clustering approach for yield stress prediction during flat rolling
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
An unsupervised clustering approach for yield stress prediction during flat rolling
چکیده انگلیسی

In flat metal production complex automation technologies are often exploited in order to improve quality according to growing market demands and to optimize the costs associated with possible wastes. In this paper an unsupervised clustering technique is proposed in order to alleviate plant conduction problems normally rising when new materials are treated in a metal flat rolling mill. The case of steel cold flat rolling is deeply treated as an example where these data-mining technologies can be successfully applied so as to classify the produced materials without the use of special sensors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 45, Issue 23, 2012, Pages 50-55