کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7177711 1467049 2016 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A three dimensional field formulation, and isogeometric solutions to point and line defects using Toupin's theory of gradient elasticity at finite strains
ترجمه فارسی عنوان
فرمولبندی میدان سه بعدی و راه حل های ایزوگومتریک نقاط نقطهای نقطه و خطی با استفاده از تئوری کشش گرادیان توپین در سویههای محدود
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی
We present a field formulation for defects that draws from the classical representation of the cores as force dipoles. We write these dipoles as singular distributions. Exploiting the key insight that the variational setting is the only appropriate one for the theory of distributions, we arrive at universally applicable weak forms for defects in nonlinear elasticity. Remarkably, the standard, Galerkin finite element method yields numerical solutions for the elastic fields of defects that, when parameterized suitably, match very well with classical, linearized elasticity solutions. The true potential of our approach, however, lies in its easy extension to generate solutions to elastic fields of defects in the regime of nonlinear elasticity, and even more notably for Toupin's theory of gradient elasticity at finite strains (Toupin Arch. Ration. Mech. Anal., 11 (1962) 385). In computing these solutions we adopt recent numerical work on an isogeometric analytic framework that enabled the first three-dimensional solutions to general boundary value problems of Toupin's theory (Rudraraju et al. Comput. Methods Appl. Mech. Eng., 278 (2014) 705). We first present exhaustive solutions to point defects, edge and screw dislocations, and a study on the energetics of interacting dislocations. Then, to demonstrate the generality and potential of our treatment, we apply it to other complex dislocation configurations, including loops and low-angle grain boundaries.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 94, September 2016, Pages 336-361
نویسندگان
, , ,