کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7178710 | 1467471 | 2014 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Lattice model of fractional gradient and integral elasticity: Long-range interaction of Grünwald-Letnikov-Riesz type
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Lattice model with long-range interaction of power-law type that is connected with difference of non-integer order is suggested. The continuous limit maps the equations of motion of lattice particles into continuum equations with fractional Grünwald-Letnikov-Riesz derivatives. The suggested continuum equations describe fractional generalizations of the gradient and integral elasticity. The proposed type of long-range interaction allows us to have united approach to describe of lattice models for the fractional gradient and fractional integral elasticity. Additional important advantages of this approach are the following: (1) It is possible to use this model of long-range interaction in numerical simulations since this type of interactions and the Grünwald-Letnikov derivatives are defined by generalized finite difference; (2) The suggested model of long-range interaction leads to an equation containing the sum of the Grünwald-Letnikov derivatives, which is equal the Riesz's derivative. This fact allows us to get particular analytical solutions of fractional elasticity equations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanics of Materials - Volume 70, March 2014, Pages 106-114
Journal: Mechanics of Materials - Volume 70, March 2014, Pages 106-114
نویسندگان
Vasily E. Tarasov,