کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
718223 | 892256 | 2009 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonlinear system identification via Gaussian regression and mixtures of kernels
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present a novel nonparametric approach for identification of nonlinear systems. Exploiting the framework of Gaussian regression, the unknown nonlinear system is modeled as a realization from a Gaussian random field. Its autocovariance is a mixture of Gaussian kernels parametrized by few hyperparameters describing the interactions among past inputs and outputs. The kernel structure and unknown hyperparameters are estimated by maximizing their marginal likelihood. Then, the nonlinear model is obtained by solving a Tikhonov-type variational problem. The Hilbert space the estimate belongs to is characterized. Benchmarks problems taken from the literature demonstrate the effectiveness of the new approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 42, Issue 10, 2009, Pages 528-533
Journal: IFAC Proceedings Volumes - Volume 42, Issue 10, 2009, Pages 528-533