کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
718416 892260 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximating All Most-Preferred Diagnoses using Greedy Algorithms
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Approximating All Most-Preferred Diagnoses using Greedy Algorithms
چکیده انگلیسی

For applications in which computing the set of all diagnoses is important, algorithms that compile the system model, such as the ATMS, are well-known. However, the space- and time-complexity of such approaches can be prohibitively large. We show how we can use a preference function over the space of diagnoses to develop approximation algorithms for computing the most-preferred diagnoses (MPD). We show that the MPD problem can be approximated by greedy algorithms such that the preference weighting of the approximate set of diagnoses is within (1 – 1/e) of that of the exact set of diagnoses. We demonstrate how the MPD problem can be solved for iterative diagnosis using a fast stochastic diagnosis engine, and by compilation approaches using prime implicant and DNNF compilation languages. We present empirical evidence that the compilation algorithms enable space reductions of several orders-of-magnitude over the full compilation, while losing relatively little query completeness.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 42, Issue 8, 2009, Pages 83-88