کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
719147 892273 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smoothing Techniques for Distributed Model Predictive Control Algorithms in Networks*
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Smoothing Techniques for Distributed Model Predictive Control Algorithms in Networks*
چکیده انگلیسی

In this paper we propose two dual decomposition methods based on smoothing techniques, called here the proximal center method and the interior-point Lagrangian method, to solve distributively separable convex problems. We show that some relevant centralized model predictive control (MPC) problems can be recast as a separable convex problem for which our dual methods can be applied. The new dual optimization methods are suitable for application to distributed MPC since they are highly parallelizable, each subsystem uses local information and the coordination between the local MPC controllers is performed via the Lagrange multipliers corresponding to the coupled dynamics or constraints.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 42, Issue 14, 2009, Pages 78-83