کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
719796 | 892283 | 2007 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
ROBUST PLACE RECOGNITION WITHIN MULTI-SENSOR VIEW SEQUENCES USING BERNOULLI MIXTURE MODELS
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This article reports on the use of Hidden Markov Models to improve the results of Localization within a sequence of Sensor Views. Local image features (SIFT) and multiple types of features from a 2D laser range scan are all converted into binary form and integrated into a single, binary, Feature Incidence Matrix (FIM). To reduce the large dimensionality of the binary data, it is modeled in terms of a Bernoulli Mixture providing good results that were reported in an earlier presentation. We have improved the good performance of the approach by incorporating the Bernoulli mixture model inside a Bayesian Network Model, an HMM, that accumulates evidence as the robot travels along the environment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 40, Issue 15, 2007, Pages 529-534
Journal: IFAC Proceedings Volumes - Volume 40, Issue 15, 2007, Pages 529-534