کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
719872 | 892285 | 2010 | 6 صفحه PDF | دانلود رایگان |

Hybrid electric vehicles are regarded as a possible solution for the reduction of pollutant emissions and for improving the fuel economy. Besides the conventional cooling circuit for the engine, hybrid vehicles need cooling for the electrical drives and for the energy storage systems as well. The development of appropriate cooling systems has the consequence that the number of auxiliary components involved, the weight and above all the energy consumption is increased. Therefore in order to minimize the energy consumption an optimal strategy for the operation of the cooling aggregates is required.In this paper an approach for finding the optimal control strategy of the electric auxiliaries over an apriori defined driving cycle is introduced. An energy minimization problem with constraints given by the maximum allowed temperature of the components is stated. This problem is based on a nonlinear mathematical model of the cooling system. It is shown how the nonlinear continuous time model can be equivalently replaced by a suitable linear discrete time model where some of the variables are confined to take integer values. This allows us to cast the optimization problem as a mixed integer linear program. The proposed approach is demonstrated by an example. For this purpose a cooling system is considered where an electrically driven water pump and an electric cooling fan are involved. As a result the optimal interaction of the water pump and the fan is computed such that the energy consumption of these components is minimized subject to given temperature constraints.
Journal: IFAC Proceedings Volumes - Volume 43, Issue 7, July 2010, Pages 87–92