کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
720233 892291 2007 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
DATA-BASED MODELLING OF NONLINEAR SYSTEMS USING A MODIFIED LOLIMOT ALGORITHM
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
DATA-BASED MODELLING OF NONLINEAR SYSTEMS USING A MODIFIED LOLIMOT ALGORITHM
چکیده انگلیسی

Modelling and identification of nonlinear dynamic systems is a challenging task because nonlinear processes are unique in the sense that they do not share many properties. Fuzzy local linearization (FLL) is a useful divide-and-conquer method for coping with complex problem such as data based nonlinear process modelling. In this paper first a modified local linear model tree (LOLIMOT) algorithm for nonlinear system modelling are proposed. Expectation maximization (EM) algorithm is used for local model estimation which improves the model performance and provides covariance information about the model mismatch which is essential in the consequent state estimation, data fusion or control applications. The proposed algorithm is presented, with an implementation on a land vehicle to validate the proposed method for modelling. Also we implement LOLIMOT+LS, ANFIS, MLP and NRBF algorithms on above mentioned land vehicle. Results demonstrate the optimum performance of proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 40, Issue 21, 2007, Pages 25-30