کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
720285 | 892292 | 2010 | 6 صفحه PDF | دانلود رایگان |

Estimation of kinetic parameters is a key step in modelling, as direct measurements are often expensive, time-consuming or even infeasible. The class of dynamic models in polynomial form is particularly relevant in systems biology and biochemical engineering, as those models naturally arise from modelling biochemical reactions using for instance mass action, Michaelis-Menten or Hill kinetics. Often the parameters are not uniquely identifiable for a given model structure and measurement set. Thus the question of which parameters are consistent or inconsistent with the data arises naturally. Here we present a method capable of proving inconsistency of entire parameter regions with the data. Based on the polynomial representation of the system, we formulate a feasibility problem that can be solved efficiently by semi-definite programming. The feasibility problem allows us to check consistency of entire parameter regions by using upper and lower bounds on the parameters. This drastically limits the search space for subsequent parameter estimation methods. In contrast to similar approaches in the literature, the here presented approach does not require a steady state assumption. Measurements at discrete time points are used, but neither regular sampling intervals, nor a time discretisation of the system is required. Measurement uncertainties are dealt with using upper and lower bounds on the measured states.
Journal: IFAC Proceedings Volumes - Volume 43, Issue 6, 2010, Pages 150-155