کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
720372 892293 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Towards Accurate and Reproducible Predictions for Prognostic: an Approach Combining a RRBF Network and an AutoRegressive Model
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Towards Accurate and Reproducible Predictions for Prognostic: an Approach Combining a RRBF Network and an AutoRegressive Model
چکیده انگلیسی

In prognostic's field, the lack of knowledge on the behavior of equipments can impede the development of classical dependability analysis, or the building of effective physic-based models. Following that, artificial neural networks (ANNs) appear to be well suited since they can learn from data gathered from equipments. In this paper, an approach combining a Recurrent Radial Basis Function network (RRBF) and an AutoRegressive with eXogenous inputs model (ARX) is proposed in order to perform the prediction step of prognostics: the ARX attempts to correct the error of predictions of the RRBF. Moreover, since performances of an ANN can be closely related to initial parameterization of the network, a criterion is defined to quantify the reproducibility of predictions and thereby a priori estimate the usefulness of neural network structure. The whole aims at improving the prediction step of prognostics, which is critical with respects to real applicative conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 43, Issue 3, 2010, Pages 140–145
نویسندگان
, ,