کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
720826 892301 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Real-time Implementation of New Nonlinear Neural Adaptive Generalized Predictive Speed Control for a Hot-Rolling Mill
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
Real-time Implementation of New Nonlinear Neural Adaptive Generalized Predictive Speed Control for a Hot-Rolling Mill
چکیده انگلیسی

The real-time application of a new design methodology for an efficient implementation of Adaptive Fuzzy Generalized Predictive Control (AFGPC) using a Radial Basis Function (RBF) based neural-fuzzy model for an experimental hot-rolling mill is presented in this paper. An optimization approach with the Gradient Decent Projection technique is proposed to calculate the predictions of the control actions. AFGPC has been implemented on a simulation platform and validated in real time to provide the mill with good speed control and regulation when steel or aluminium hot-rolling experiments are carried out. From such real time experiments and numerical simulations, it can be concluded that the proposed control scheme performs very well, showing good robustness and disturbance rejection under setpoint and load changes. These successful results will form the basis for future experiments to realise ‘right first time’ production of metals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 42, Issue 23, 2009, Pages 243-248