کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7211125 1469251 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures
ترجمه فارسی عنوان
مقایسه رگرسیون خطی و شبکه عصبی مصنوعی یک موتور دیزل که از مخلوط های آلیاژی الکتریکی استفاده می شود
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی
This study deals with usage of linear regression (LR) and artificial neural network (ANN) modeling to predict engine performance; torque and exhaust emissions; and carbon monoxide, oxides of nitrogen (CO, NOx) of a naturally aspirated diesel engine fueled with standard diesel, peanut biodiesel (PME) and biodiesel-alcohol (EME, MME, PME) mixtures. Experimental work was conducted to obtain data to train and test the models. Backpropagation algorithm was used as a learning algorithm of ANN in the multilayered feedforward networks. Engine speed (rpm) and fuel properties, cetane number (CN), lower heating value (LHV) and density (ρ) were used as input parameters in order to predict performance and emission parameters. It was shown that while linear regression modeling approach was deficient to predict desired parameters, more accurate results were obtained with the usage of ANN.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Alexandria Engineering Journal - Volume 55, Issue 4, December 2016, Pages 3081-3089
نویسندگان
, , ,