| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 7216199 | 1469647 | 2016 | 16 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach
												
											ترجمه فارسی عنوان
													شناسایی پارامترهای ناپیوستگی بر اساس عملیات تشکیل رسم عمیق با استفاده از یک رویکرد ترکیبی جامع جهانی محلی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													سایر رشته های مهندسی
													مهندسی (عمومی)
												
											چکیده انگلیسی
												Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Comptes Rendus Mécanique - Volume 344, Issues 4â5, AprilâMay 2016, Pages 319-334
											Journal: Comptes Rendus Mécanique - Volume 344, Issues 4â5, AprilâMay 2016, Pages 319-334
نویسندگان
												Miguel Jr., Marco A. Luersen, Pablo A. Muñoz-Rojas, Robson G. Trentin, 
											