کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7216253 1469941 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integro-differential nonlocal theory of elasticity
ترجمه فارسی عنوان
تئوری انعطاف پذیر غیرخطی کششی
کلمات کلیدی
مواد غیر موضعی درجه سوم، تئوری غیرخطی کششی، مدل انعطاف پذیری انعطاف پذیر، ترمودینامیک جامدات، برنولی ایلل نانو پرتو،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی
The second-order integro-differential nonlocal theory of elasticity is established as an extension of the Eringen nonlocal integral model. The present research introduces an appropriate thermodynamically consistent model allowing for the higher-order strain gradient effects within the nonlocal theory of elasticity. The thermodynamic framework for third-grade nonlocal elastic materials is developed and employed to establish the Helmholtz free energy and the associated constitutive equations. Establishing the minimum total potential energy principle, the integro-differential conditions of dynamic equilibrium along with the associated classical and higher-order boundary conditions are derived and comprehensively discussed. A rigorous formulation of the third-grade nonlocal elastic Bernoulli-Euler nano-beam is also presented. A novel series solution based on the modified Chebyshev polynomials is introduced to examine the flexural response of the size-dependent beam. The proposed size-dependent beam model is demonstrated to reveal the stiffening or softening flexural behaviors, depending on the competitions of the characteristic length-scale parameters. The higher-order gradients of strain fields are illustrated to have more dominant effects on the beam stiffening.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Engineering Science - Volume 129, August 2018, Pages 96-110
نویسندگان
,