کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7222767 | 1470498 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Convergence to equilibrium for smectic-A liquid crystals in 3D domains without constraints for the viscosity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we focus on a smectic-A liquid crystal model in 3D domains, and obtain three main results: the proof of an adequate Lojasiewicz-Simon inequality by using an abstract result, the rigorous proof (via a Galerkin approach) of the existence of global in-time weak solutions that become strong (and unique) in long-time, and its convergence to equilibrium of the whole trajectory as time goes to infinity. Given any regular initial data, the existence of a unique global in-time regular solution (bounded up to infinite time) and the convergence to an equilibrium have been previously proved under the constraint of a sufficiently high level of viscosity. Here, all results are obtained without imposing said constraint.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 102, June 2014, Pages 208-219
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 102, June 2014, Pages 208-219
نویسندگان
Blanca Climent-Ezquerra, Francisco Guillén-González,