کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
722583 892331 2006 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
CONTRIBUTION OF NON INTEGER INTEGRO-DIFFERENTIAL OPERATORS (NIDO) TO THE GEOMETRICAL UNDERSTANDING OF RIEMANN'S CONJECTURE-(I)
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
CONTRIBUTION OF NON INTEGER INTEGRO-DIFFERENTIAL OPERATORS (NIDO) TO THE GEOMETRICAL UNDERSTANDING OF RIEMANN'S CONJECTURE-(I)
چکیده انگلیسی

Advances in fractional analysis suggest a new way for the understanding of Riemann's conjecture. This analysis shows that any divisible natural number may be related to phase angles naturally associated with a certain class of non integer integro differential operators. It is shown that the subset of prime numbers is most likely related to a phase angle of ±π/4 to a 1/2-order differential equations and with their singularities. Riemann's conjecture asserting that, if s is a complex number, the non trivial zeros of zeta function in the gap [0,1], is characterized by, can be understood as a consequence of the properties of 1/2-order fractional differential equations on the prime number set. This physical interpretation suggests opportunities for revisiting flitter and cryptographic methodologies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 39, Issue 11, January 2006, Pages 230-233