کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
722765 892335 2007 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
GRASSMANN MATRICES, DETERMINANTAL ASSIGNMENT PROBLEM AND APPROXIMATE DECOMPOSABILITY
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
GRASSMANN MATRICES, DETERMINANTAL ASSIGNMENT PROBLEM AND APPROXIMATE DECOMPOSABILITY
چکیده انگلیسی

The exterior equation an n—dimensional vector space over F, is an integral part of the study of the Determinantal Assignment Problem (DAP) of linear systems and its solvability (decomposability of ) is characterised by the Quadratic Pliicker Relations (QPR). An alternative new test for decomposability of is given, in terms of the rank properties of the Grassmann matrix, , which is constructed by the coordinates of . It is shown that the exterior equation is solvable ( is decomposable), if and only if dim = m, where . If is decomposable, then the solution space is simply defined by . The linear algebra formulation of the decomposability problem provides an alternative framework (to that defined by the QPRs) for the study of solvability and computation of solutions of DAP and enables the definition and study of “approximate solutions” of exterior equations as a distance problem. For the case of m = 2, n = 4 a solution to approximate decomposability is given and its properties are linked to the singular values of .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 40, Issue 20, 2007, Pages 220-225