کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
724481 892381 2006 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
BATCH PROCESS MONITORING USING MULTIBLOCK MULTIWAY PRINCIPAL COMPONENT ANALYSIS
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
BATCH PROCESS MONITORING USING MULTIBLOCK MULTIWAY PRINCIPAL COMPONENT ANALYSIS
چکیده انگلیسی

Batch process monitoring to detect the existence and magnitude of changes that cause a deviation from the normal operation has gained considerable attention in the last decade. There are some batch processes that occur as a single step, whereas many others include multiple phases due to operational or phenomenological regimes or multiple stages where different processing units are employed. Having a single model for all different phases/stages with different covariance structures may not give a sufficient explanation of the system behavior and fault detection and diagnosis can be more challenging with increasing model size. Multiblock methods have been recently proposed to improve the capabilities of the existing statistical monitoring models. In this study, a multiblock algorithm based on concensus principal component analysis is applied to the benchmark fed-batch penicillin fermentation simulator data. The results of a static multiblock model and a sliding window multiblock model are compared. The need for data synchronization, and the effect of block size are discussed. Multiblock multiway principal component analysis methods are found to be effective in fault detection and localization.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: IFAC Proceedings Volumes - Volume 39, Issue 2, 2006, Pages 209-214