کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
725207 892507 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hexagonal scale invariant feature transform (H-SIFT) for facial feature extraction
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Hexagonal scale invariant feature transform (H-SIFT) for facial feature extraction
چکیده انگلیسی

Feature transformation and key-point identifi is the solution to many local feature descriptors. One among such descriptor is the Scale Invariant Feature Transform (SIFT). A small effort has been made for designing a hexagonal sampled SIFT feature descriptor with its applicability in face recognition tasks. Instead of using SIFT on square image coordinates, the proposed work makes use of hexagonal converted image pixels and processing is applied on hexagonal coordinate system. The reason of using the hexagonal image coordinates is that it gives sharp edge response and highlights low contrast regions on the face. This characteristic allows SIFT descriptor to mark distinctive facial features, which were previously discarded by original SIFT descriptor. Furthermore, Fisher Canonical Correlation Analysis based discriminate procedure is outlined to give a more precise classification results. Experiments performed on renowned datasets revealed better performances in terms of feature extraction in robust conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Applied Research and Technology - Volume 13, Issue 3, June 2015, Pages 402–408
نویسندگان
, , , ,