کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
732535 893250 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Vibration analysis for bearing fault detection and classification using an intelligent filter
ترجمه فارسی عنوان
تجزیه و تحلیل ارتعاش برای تشخیص و طبقه بندی گسل های تحمل با استفاده از یک فیلتر هوشمند
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی

This paper proposes an intelligent method based on artificial neural networks (ANNs) to detect bearing defects of induction motors. In this method, the vibration signal passes through removing non-bearing fault component (RNFC) filter, designed by neural networks, in order to remove its non-bearing fault components, and then enters the second neural network that uses pattern recognition techniques for fault classification. Four different categories include; healthy, inner race defect, outer race defect, and double holes in outer race are investigated. Compared to the regular fault detection methods that use frequency-domain features, the proposed method is based on analyzing time-domain features which needs less computational effort. Moreover, machine and bearing parameters, and the vibration signal spectrum distribution are not required in this method. It is shown that better results are achieved when the filtered component of the vibration signal is used for fault classification rather than common methods that use directly vibration signal. Experimental results on three-phase induction motor verify the ability of the proposed method in fault diagnosis despite low quality (noisy) of measured vibration signal.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechatronics - Volume 24, Issue 2, March 2014, Pages 151–157
نویسندگان
, , ,