کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
732896 | 893277 | 2010 | 5 صفحه PDF | دانلود رایگان |

Cadmium doped zinc oxide thin films have been prepared using a thermal decomposition technique. The influence of Cd as a doping agent on the structure, optical and nonlinear optical properties was carefully investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and a UV–vis spectrophotometer. A deep correlation has been found between the surface roughness and the optical properties. The roughness is found to deteriorate the nonlinear response, such that the highest nonlinear susceptibility χ(3) is obtained for the smoothest layer. The third-order nonlinear susceptibility χ(3) has been calculated using the Frumer model, and is estimated to be 3.37×10−10 esu. The dispersion of the refractive index of the prepared thin film is shown to follow the single electronic oscillator model. From the model, the values of oscillator strength (Ed), oscillator energy (Eo) and dielectric constant (ε∞) have been determined. The conductivity has been measured as a function of the energy of the photons, revealing marginal change at energies below 3.15 eV, while above this value there is a large increase in the conductivity. This suggests that CdZnO is a potential candidate for applications in optical devices such as optical limiter and optical switching.
Journal: Optics & Laser Technology - Volume 42, Issue 7, October 2010, Pages 1134–1138