کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
732912 | 893293 | 2010 | 11 صفحه PDF | دانلود رایگان |

Laser technology has shown fast growth due to its demands in material processing and manufacturing. Laser material processing includes various applications like cutting, welding, drilling, cladding and surface treatment. In laser surface treatment, the material properties at the surface are altered through surface alloying and transformation hardening. In this study, an enthalpy-based computational model is developed for analyzing laser heating and melting of metals. The solution to the problem is obtained by using a finite element method and validated by comparing the results with that given by an analytical solution to a limiting case problem. A solution algorithm and a computational code are developed to estimate the temperature distribution, solid-liquid interface location and shape and size of the molten pool. The computational model is validated by comparing results with a limiting case analytical model. The study is conducted to analyze the heating rate, the heat affected zone, and the shape and size of the molten pool using a Gaussian laser beam.
Journal: Optics & Laser Technology - Volume 42, Issue 6, September 2010, Pages 855–865