کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
733915 893378 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor
چکیده انگلیسی

Optimizing the system performance metric directly is an important method for correcting wavefront aberrations in an adaptive optics (AO) system where wavefront sensing methods are unavailable or ineffective. An appropriate “Deformable Mirror” control algorithm is the key to successful wavefront correction. Based on several stochastic parallel optimization control algorithms, an adaptive optics system with a 61-element Deformable Mirror (DM) is simulated. Genetic Algorithm (GA), Stochastic Parallel Gradient Descent (SPGD), Simulated Annealing (SA) and Algorithm Of Pattern Extraction (Alopex) are compared in convergence speed and correction capability. The results show that all these algorithms have the ability to correct for atmospheric turbulence. Compared with least squares fitting, they almost obtain the best correction achievable for the 61-element DM. SA is the fastest and GA is the slowest in these algorithms. The number of perturbation by GA is almost 20 times larger than that of SA, 15 times larger than SPGD and 9 times larger than Alopex.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optics & Laser Technology - Volume 43, Issue 3, April 2011, Pages 630–635
نویسندگان
, ,