کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
734440 | 1461650 | 2013 | 8 صفحه PDF | دانلود رایگان |

This paper demonstrates the color compensation algorithm to reduce the color distortion caused by mismatches between the reference gamma value of a dimming algorithm and the display gamma values of an LCD panel in a low power adaptive dimming scheme. In 2010, we presented the YrYgYb algorithm, which used the display gamma values extracted from the luminance data of red, green, and blue sub-pixels, Yr, Yg, and Yb, with the simulation results. It was based on the ideal panel model where the color coordinates were maintained at the fixed values over the gray levels. Whereas, this work introduces an XrYgZb color compensation algorithm which obtains the display gamma values of red, green, and blue from the different tri-stimulus data of Xr, Yg, and Zb, to obtain further reduction on the color distortion. Both simulation and measurement results ensure that a XrYgZb algorithm outperforms a previous YrYgYb algorithm. In simulation which has been conducted at the practical model derived from the measured data, the XrYgZb scheme achieves lower maximum and average color difference values of 3.7743 and 0.6230 over 24 test picture images, compared to 4.864 and 0.7156 in the YrYgYb one. In measurement of a 19-inch LCD panel, the XrYgZb method also accomplishes smaller color difference values of 1.444072 and 5.588195 over 49 combinations of red, green, and blue data, compared to 1.50578 and 6.00403 of the YrYgYb at the backlight dimming ratios of 0.85 and 0.4.
► A practical LCD panel model is extracted from the measured data.
► Color compensation is evaluated by means of simulation and measurement.
► New XrYgZb algorithm achieves further reduction on color distortion.
Journal: Optics & Laser Technology - Volume 48, June 2013, Pages 52–59