کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7352030 | 1476979 | 2018 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A parametric bootstrap to evaluate portfolio allocation models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم انسانی و اجتماعی
اقتصاد، اقتصادسنجی و امور مالی
اقتصاد و اقتصادسنجی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
If the asset returns are multivariate normal and the investor knows the moments, the Mean-Variance (MV) solution provides the portfolio with the highest Sharpe ratio. However, estimation errors of the moments misalign the allocation weights, and the out-of-sample Sharpe ratio falls. The paper introduces a parametric bootstrap to estimate the predictive Sharpe ratio, the most likely Sharpe ratio that the investor would see out of sample. This Sharpe ratio is advantageous because it includes the distortions from estimation errors and the investor can see the most likely results before investing capital. The approach is quite general and one can use the approach for any portfolio allocation model that uses the moments in some way. The ex ante feature of the test is key, as the test allows the investor to see which model works best before the investors commits capital.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finance Research Letters - Volume 25, June 2018, Pages 76-82
Journal: Finance Research Letters - Volume 25, June 2018, Pages 76-82
نویسندگان
Wentworth Boynton, Fang Chen,