کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
736505 | 893870 | 2011 | 7 صفحه PDF | دانلود رایگان |

This paper presents a vibration amplitude measurement method that greatly reduces the effects of baseline resistance drift in an all-polymer piezoresistive flow sensor or microtuft. The sensor fabrication is based on flexible printed circuit board (flex-PCB) technology to enable the potential for low-cost and scalable manufacture. Drift reduction is accomplished by discriminating the flow-induced vibration (‘flutter’) amplitude of the microtuft-based sensor as a function of flow velocity. Flutter peak-to-peak amplitude is measured using a microcontroller-based custom readout circuit. The fabricated sensor with the readout circuitry demonstrated a drift error of 2.8 mV/h, which corresponds to a flow-referenced drift error of 0.2 m/s of wind velocity per hour. The sensor has a sensitivity of 14.5 mV/(m/s) with less than 1% non-linearity over the velocity range of 5–16 m/s. The proposed vibration amplitude measurement method is also applied to a sensor array with a modified structure and a reduced dimension, which demonstrated a sensitivity of 13.2 mV/(m/s) with a flow-referenced drift error of 0.03 m/s of wind velocity per hour.
Journal: Sensors and Actuators A: Physical - Volume 165, Issue 1, January 2011, Pages 66–72