کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
752562 | 895442 | 2012 | 11 صفحه PDF | دانلود رایگان |

In this paper, the effects of the open crack on the static and dynamic pull-in voltages of an electrostatically actuated fixed-fixed and cantilever micro-beam are investigated. By presenting a mathematical modeling, the governing static and dynamic equations are solved by SSLM and Galerkin-based Reduced Order Model, respectively. Then, each single-side open crack in the micro-beam is modeled by a massless rotational spring and the cracked mode shapes and corresponding natural frequencies are calculated by considering the boundary and patching conditions and using transfer matrix methods. Finally, the effects of the crack depth ratio, crack position and crack number on the pull-in voltage of the micro-beams are studied. It is shown that beside the residual stresses created in the machining process, the crack(s) can be initiated, growth and consequently change the pull-in voltage of the system by decreasing the natural frequencies. The results show that the crack position is effective beside the crack depth ratio in decreasing the pull-in voltage. Also it is shown that in the fixed-fixed micro-beam there are several points for the crack location in which, the pull-in voltage is extremum.
Journal: Acta Mechanica Solida Sinica - Volume 25, Issue 6, December 2012, Pages 627-637