کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7538492 1488855 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multilevel models for social networks: Hierarchical Bayesian approaches to exponential random graph modeling
ترجمه فارسی عنوان
مدل های چند سطحی برای شبکه های اجتماعی: رویکردهای سلسله مراتبی بیزی برای مدل سازی تصادفی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
چکیده انگلیسی
In many applications, researchers may be interested in studying patterns of dyadic relationships that involve multiple groups, with a focus on modeling the systematic patterns within groups and how these structural patterns differ across groups. A number of different models - many of them potentially quite powerful - have been developed that allow for researchers to study these differences. However, as with any set of models, these are limited in ways that constrain the types of questions researchers may ask, such as those involving the variance in group-wise structural features. In this paper, we demonstrate some of the ways in which multilevel models based on a hierarchical Bayesian approach might be used to further develop and extend existing exponential random graph models to address such constraints. These include random coefficient extensions to the standard ERGM for sets of multiple unconnected or connected networks and examples of multilevel models that allow for the estimation of structural entrainment among connected groups. We demonstrate the application of these models to real-world and simulated data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Social Networks - Volume 44, January 2016, Pages 334-345
نویسندگان
, ,