کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7538636 | 1488858 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Discovery of anomalous behaviour in temporal networks
ترجمه فارسی عنوان
کشف رفتار غیرعادی در شبکههای زمانی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تحلیل آماری، تجزیه و تحلیل شبکه شبکه، مدل زمانی گسسته، رسانه های اجتماعی،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
چکیده انگلیسی
In this work we consider the problem of detecting anomalous behaviour and present a novel approach that allows 'behaviour' to be classified as either to be normal or abnormal by checking the p-value associated with the occurrence of the behaviour which is modelled following a binomial distribution within a discrete time model. We investigate the problem of detecting anomalous behaviour by looking at how communication evolves over time in a social network graph. Under the assumption that some nodes of the network could be labelled qualitatively, we present a novel approach that allows us to infer a subset of nodes of the social network which might share the same qualitative connotation. In other words, assuming one or more members belong to some criminal organisation, we wish to investigate how many other persons belong to the same organisation. We have tested our method in two datasets, VAST2008 and a Twitter Dataset (data collected in 2012), with encouraging results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Social Networks - Volume 41, May 2015, Pages 18-25
Journal: Social Networks - Volume 41, May 2015, Pages 18-25
نویسندگان
Maria Grazia Vigliotti, Chris Hankin,