کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
7539356 | 1488940 | 2017 | 20 صفحه PDF | سفارش دهید | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior
ترجمه فارسی عنوان
یک روش عملی برای تست اعتبار توزیع استاندارد گومبل در مدل های انتخاب چندجملهای مبتنی بر منطق رفتار رفتاری است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
علوم انسانی و اجتماعی
علوم تصمیم گیری
علوم مدیریت و مطالعات اجرایی
چکیده انگلیسی
Most multinomial choice models (e.g., the multinomial logit model) adopted in practice assume an extreme-value Gumbel distribution for the random components (error terms) of utility functions. This distributional assumption offers a closed-form likelihood expression when the utility maximization principle is applied to model choice behaviors. As a result, model coefficients can be easily estimated using the standard maximum likelihood estimation method. However, maximum likelihood estimators are consistent and efficient only if distributional assumptions on the random error terms are valid. It is therefore critical to test the validity of underlying distributional assumptions on the error terms that form the basis of parameter estimation and policy evaluation. In this paper, a practical yet statistically rigorous method is proposed to test the validity of the distributional assumption on the random components of utility functions in both the multinomial logit (MNL) model and multiple discrete-continuous extreme value (MDCEV) model. Based on a semi-nonparametric approach, a closed-form likelihood function that nests the MNL or MDCEV model being tested is derived. The proposed method allows traditional likelihood ratio tests to be used to test violations of the standard Gumbel distribution assumption. Simulation experiments are conducted to demonstrate that the proposed test yields acceptable Type-I and Type-II error probabilities at commonly available sample sizes. The test is then applied to three real-world discrete and discrete-continuous choice models. For all three models, the proposed test rejects the validity of the standard Gumbel distribution in most utility functions, calling for the development of robust choice models that overcome adverse effects of violations of distributional assumptions on the error terms in random utility functions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Transportation Research Part B: Methodological - Volume 106, December 2017, Pages 173-192
Journal: Transportation Research Part B: Methodological - Volume 106, December 2017, Pages 173-192
نویسندگان
Ye Xin, Venu M. Garikapati, Daehyun You, Ram M. Pendyala,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت